ON THE STABILITY OF REGULAR PRECESSION
 OF A SATELLITE

(OB USTOICHIVOSII REGULIARNOI PRETSESSII SPUTNIKA)

PMM Vol.28, № 1, 1964, pp.155-157
F.L. CHERNOUS'KO
(Moscow)
(Received May 15, 1963)

Considered is the motion of a rigid body (satellite) in the field of attraction of a fixed center. Sufficient conditions of stability are derived for the regular precession of a satellite which are compared with the necessary conditions.

Within the accuracy of terms of order $(1 / R)^{2}(1$ is the characteristic linear dimension of the satellite and $R \quad 1$ is the radius vector from the center of attraction to its center of mass) the motion of the satellite center of mass may be considered independent of its relative motion and is consequently governed by Kepler's laws. Let the satellite possess dynamic symmetry with A and C being its principal central moments of inertia (equatorial and axial respectively). The moment of the gravitational forces about the satellite center of mass within the accuracy of terms of order $1 / R$ is equal to [1]

$$
\begin{equation*}
\mathbf{L}=3 \mu R^{-5}(C \cdots A)(\mathbf{R z})(\mathbf{R} \times \mathbf{z}) \tag{1}
\end{equation*}
$$

Here μ is the gravitational constant and \mathbf{z} is the unit vector along the dynamic symmetry of the satellite. We will find the conditions for which the satellite can perform regular precession. The moment of external forces must in this case be equal to

$$
\begin{equation*}
\mathbf{L}=\left(\omega_{1} \times \mathbf{z}\right)\left[C \Omega+(C-A) \omega_{1} \cos \theta\right] \tag{2}
\end{equation*}
$$

where w_{1} is the constant angular velocity vector of the precession, Ω is the angular velocity of the body and θ the nutation angle. Comparing (1) and (2) we note that if $L \neq 0$ the vectors $\boldsymbol{\omega}_{1}, \mathbf{R}$ and \mathbf{z} are coplanar. It follows from the kinematic properties of Kepler motion and regular precession that this is possible only in a circular orbit, whereby $w_{1}=w_{0}$ (ω_{0} is the angular velocity vector for orbital motion, $\omega_{0}{ }^{2}=\mu R^{-3}$). If, on the other hand, $L=0$ then the vectors R and \mathbf{z} are at all times either collinear or orthogonal (the trivial case $A=C$ is not considered). In the presence of regular precession, this is also possible only in a circular orbit and for $\omega_{1}=\omega_{0}$. Therefore, in the following the orbit will be considered circular.

Let α, β and γ be the direction cosines of the unit vector z relative to the satellite mass center velocity vector, the normal to the orbit plane (ω_{0}) and the radius vector R, respectively. Obviousiy,

$$
\begin{equation*}
\boldsymbol{a}^{2}+\boldsymbol{\beta}^{2}+\boldsymbol{\gamma}^{2}=1 \tag{3}
\end{equation*}
$$

In addition, $\beta=\cos \theta$ and with no loss of generality it is a. umid hhot $\beta \geqslant 0$ (in the oppositc case the direction of $z \quad$ ic roverecu). Equatith. (1) and (2) with $\omega_{1}=\omega_{0}$, we find the possible regimen of regular precession which can be conveniently represented in the form uf thet une-paymeter families

$$
\begin{gather*}
\quad \theta=0, \quad \alpha=\gamma=0, \quad \beta=1, \quad \Omega=\Omega_{0} \tag{4}\\
\theta=\theta_{0} \neq 0, \quad r=0, \quad \beta=\cos \theta_{0}, \quad \Omega=(A-C) C^{-1} \omega_{0} \cos \theta_{0} \tag{5}\\
\theta=\theta_{0} \neq 0, \quad \alpha=0, \quad \beta=\cos \theta_{0}, \quad \Omega=4(A-C) C^{-1} \omega_{0} \cos \theta_{0} \tag{6}
\end{gather*}
$$

The parameter in (4) is Ω_{0}, and in (5) and (6) it is the angle Go located, by assumption $(\boldsymbol{\beta} \geqslant 0$) in the first quarter. The case (4) is that of uniform rotation in the orbit plane. In the case (5) the satellite axis z is perpendicular to the radius vector R, while in (6) it is perpendicula. to the mass center velocity vector, where moreover $L=0$ in the cases of (4) and (5). Solutions (4) to (6) have been obtained by a different method in the works of V.T. Kondudar' and Duboshin (See, for example, [2]).

Let us find the sufficient stability conditions for the motions (4) to (b) by the method of N.G. Chetaev. The first integral of the equations of tht satellite relative motion for a circular orbit [1] and for the case of dynamic symmetry is of the form

$$
A\left(p^{2}+q^{2}\right)+C r^{2}+3 \omega_{0}^{2}(C-A) \gamma^{2}+\omega_{0}^{2}(A-C) \beta^{2}=h
$$

Here r is the projection of the relative angular velocity $w-w_{0}$ of the satellite on the z-axis (ω is the absolute angulay velocity), while F and q are its procections in any two mutually perpendicular directiont in the equatortal planc of tho satellite. Also, because of the condition of dynamic symmetry, we have the first integrai $r+w_{0} \beta=r_{0}$. We will select the constants k_{1} and k_{2} such that the first integral $V=h+k_{1} r_{0}+k_{2} r_{n}{ }^{2}$ obtain a strict minimum for the values of its arguments corresponding to one of the motions in (4) to (6). Note hiat for all these motione $p=q=0$ and $r=\Omega$.

Let us first conciaer the undisturbed notion (4) and let for the disturbed motion $p=\dot{u}_{1}, q=u_{2}, r=\Omega_{0}+u_{3}, \alpha=u_{4}$ and $\gamma=u_{5}$, while β is eliminated by means of (3). Then, as can be easily seen, the first integral $V_{1}=h-2 C \Omega_{0} r_{0}$ considered as a function of the variables u_{1}, has a strict minimum at the point $u_{3}=0(t=1,2,3,4,5)$, if simultaneousiy

$$
C \Omega_{0}+\omega_{0}(C-A)>0, \quad C \Omega_{0} 44 \omega_{0}(C-A)>0
$$

Hence, on the strength of the known theorem for the stability of motion, It follows that for the stability of motion (4) it is sufficient that

$$
\begin{align*}
& \Omega_{0}>(A-C) \omega_{0} / C \quad \text { for } A \leqslant C \tag{7}\\
& \Omega_{0}>4(A-C) \omega_{0} / C \quad \text { for } A \geqslant C
\end{align*}
$$

Let his consider now the motion (5) as undisturbed and let

$$
\begin{gathered}
p=u_{1}, \quad q=u_{2}, \quad r=\left(A C^{-1}-1\right) \omega_{0} \cos \theta_{0}+u_{3} \\
\beta=\cos \theta_{0}+u_{4}, \quad \gamma=u_{5}
\end{gathered}
$$

while a is eliminated by means of (3). In this case, the function

$$
V_{2}=h-2 A \omega_{0} r_{4} \cos \theta_{0}+C^{2} A^{-1} r_{0}^{2}
$$

will be, up to the accuracy of the constant term, a positive-definite quadratic form in $u_{\text {, }}$ for the condition $A<C$ which will be sufficient for the stability of motion (5).

Finally, in order to investigate the stability of motion (6) we let

$$
\begin{gathered}
p=u_{1}, \quad q=u_{2}, \quad r=4\left(A C^{-1}-1\right) \omega_{0} \cos \theta_{0}+u_{3} \\
\alpha=u_{4}, \beta=\cos \theta_{0}+u_{5}
\end{gathered}
$$

and eliminate y by means of (3). The first integral

Fig. 1

$$
V_{3}=h-8(A-C) \omega_{0} r_{0} \cos \theta_{0}
$$

is, up to the accuracy of the constant term, a positive-definite quadratic form in u_{1} for $A>C$. This, condition is sufficient for the stability of motion (6).

Let us compare the derived sufficient conditions with the necessary conditions for stability of the motions (4) to (6). These conditions are obtained if the equations of motion are linearized near the solutions (4) to (6) and require that the real parts of all roots of the characteristic equation for the system of linear approximation be nonpositive.

The investigation of stability of motion (4) leads to the necessary conditions

$$
\begin{equation*}
a \geqslant 2 \sqrt{\bar{b}}, \quad b \geqslant 0 \tag{8}
\end{equation*}
$$

where

$$
\begin{gather*}
a=(x y+x-2)^{2}+(x y+x-1)+(x y+4 x-4) \\
b=(x y+x-1)(x y+4 x-4), \quad x=C / A \\
y=\Omega_{0} / \omega_{0} \tag{9}
\end{gather*}
$$

Note that $x \leqslant 2$ for any dynamically symmetrical rigid body. Conditions (8) and (9) have been derived in a somewhat different notation by Tomson [3]. Substituting (9) into (8) these conditions are simplified. For $x \geqslant 1$ it is necessary for stability that one of the following two in-
equalities be satisfied

$$
\begin{equation*}
y \geqslant x^{-1}-1, \quad y \leqslant 4\left(x^{-1}-1\right) \tag{10}
\end{equation*}
$$

For $x \leqslant 1$ it is necessary that either

$$
\begin{equation*}
y \geqslant 4\left(x^{-1}-1\right) \tag{11}
\end{equation*}
$$

or that the following two conditions be fulfilled simultaneously

$$
\begin{equation*}
y \leqslant x^{-1}-1, \quad \sqrt{1-x-x y}+\sqrt{4-4 x-x y} \leqslant 2-x-x y \tag{12}
\end{equation*}
$$

The sufficient conditions (7) differ only by the strict sign of inequality from the first condition in (10) and the condition in (11). Fig. 1 shows the regions defined by the inequalities (10) to (12) on the surface of the parameters x, y. The region \bar{l} is truly stable (sufficient conditions are fulfilled), the regions 2 are unstable (necessary conditions are violated), while in the region 3 only the necessary conditions are satisfied. The boundaries of the regions 1,2 and 2,3 have asymptote $x=0$, while the boundary of the reaions 2,3 for $x<1$ intersects the x-axis at $x=x_{0}=$ $=(3 \sqrt{5}-5) / 2 \approx 0.854$. Note that in the region 3 there exist points $(y \rightarrow \infty$, as well as the line $x=1)$ corresponding to the known stable regimes of motion.

In [3] the conditions of the type (10) to (12) are missing, and the presenter \bar{A} agram of the stability regions is incorrect, especially near $x=1$ (the dashed curve in Fig. 1). It has no region of instability for $x>1$.

The necessary conditions of stability for motions (5) and (6) have been derived in the work of Duboshin [2]. For the stability of motion (5) it is
necessary that $A \leqslant C$. The above derived sufficient condition $A<C$ alfers from the necessary one only by the strict inequality sign.

For the stability of motion (6) it is necessary that either $A \geqslant C(x \leqslant 1)$, or that following two conditions be simultaneously fulfilled [2]

$$
\begin{equation*}
x \geqslant \frac{4}{3}, \quad \cos ^{2} \theta_{0} \geqslant \frac{18 x^{2}-27 x+8+2(3 x-2) \sqrt{(3 x-1)(3 x-4)}}{27 x^{2}(x-1)} \tag{13}
\end{equation*}
$$

where x is defined by Formula (9). The regions of true stability 1 and the instability 2, and the region 3 where the necessary conditions (13) are fulfilled, are

Fig. 2 shown in Fig. 2 for the motion (6).

We will consider some particular cases. For $\Omega_{0}=-\omega_{0}(y=-1)$ solution (4) describes the translational motion of the satellite, the axis z of dynamic symmetry of which is perpendicular to the orbit plane (Ω_{0} is the relative angular velocity). It follows from the above-obtained conditions that this motion ean be stable only for a satellite where $1 \leqslant C / A \leqslant 1 / 3^{*}$

For $\Omega_{0}=0(y=0)$ the motion (4) represents the position of relative equilibrium of the satellite in a clroular orbit, for which satellite's z-axis is perpendicular to the orbit plane. Conditions (7) and (12) show that this position of equilibrium is stable for $A<C$ and unstable for $C / A<x_{0} \approx 0.854$.

For $\theta_{0}=\pi / 2$ the motions (5) and (6) pass into two different positions of relative equilibrium of the satellite in a circular orbit: the z-axis is directed along the tangent to the orbit or along the radius vector R. The derlved conditions show that the orientation of the satellite axis z along the tangent to the orbit is stable for $A<C$ and unstable for $A>C$, while its orientation along the radius vector is stable for $A>C$ and unstable for $A<C$.

BIBLIOGRAPHY

1. Beletskii, V.V., O libratsii sputnika (On Satellite Libration). Collection "Lskusstvennye sputniki zemil" (Artificial Earth Sateliftes). Publ. of Akad.Nauk SSSR, № 3, 1959.
2. Duboshin, G.N., O vrashohatel'nom dvizhenil iskusstvennykh nebesnykh tel (On the rotational motion of artificial celestial bodies). Bull.Inst. theor .Astr., Vol.7, № 7, 1960.
3. Thomson, W.T., Spin stabilization of attitude against gravity torque. J.astronaut.Sci., Vol.9, NE 1, 1962.
