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Consldered 1s the motion of a rigid body (satellite) in the field of attrac-
tion of a fixed center. Sufficient conditions of stability are derived for
the regular precesslon of a satellite which are compared with the necessary
conditions.

Within the accuracy of terms cf order (I1/R)2 (7 is the characteristic
linear dimension of the satellite and R 1s the radius vector from the
center of attraction to its center of mass) the motion of the satellite
center of mass may be considered independent of its relative motion and is
consequently governed by Kepler's laws, Let the satellite possess dynamlc
symmetry with 4 and (¢ Dbeing 1ts principal central moments of inertla
(equatorial and axial respectively). The moment of the gravitational forces
about the satellite center of mass within the accuracy of terms of order 1/R
is equal to [1]

L = 3uR-5(C — 4) (R2) (R x 2) o)

Here u 1is the gravitational constant and 2z 1s the unit vector along the
dynamic symmetry of the satellite. We will find the conditions for which
the satelllte can perform regular precession. The moment of external forces
must 1n this case be equal to

L= (&, 2} [CQ 4+ (C — A) v, cos8] (2)

where w,; 1s the constant angular velocity vector of the precession, 0 1is
the angular velocity of the body and § the nutation angle._ Comparing (1)
and (2) we note that 1f 7 # O the vectors w,, R and 2 are coplanar.

It follows from the kinematic properties of Kepler motion and regular pre-
cession that this 1s possible only in a circular crbit, whereby wy = W

(wg 1s the angular velocity vector for orbital motlon, we® = wr"2). If, on
the other hand, 7 = O then the vectors R and g are at all times
either collinear or orthogonal (the trivial case 4 = ¢ 1s not considered).
In the presence of regular precesslon, this is also possible only in a circu-
lar orbit and for w,; = we . Therefore, in the following the orblit will be
considered clrcular.

Let a, B and y be the direction cosines of the unit vector 2 rela-
tive to the satellite mass center velocity vector, the normal to the orbit
plane (w,) and the radius vector R , respectively. Obviously,

ot +p2 41 =1 3
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In addition, B = cos 8 and with no loss of generality it 1o a. cumca thet
P >0 (in the opposite case the direction of 2z 1is reverced). Fquatin,
(1) and (2) with w; = we , we find the possible regime. of rcpular pro-
cession which can be conveniently represented in the form of th ee une-pars-
meter families

emoi u::‘r:(), B:i’ Q:QO (4)
8=08,=0, T=0, B = cosOy, Q= (4 — C)Clw,cos 8, 5)
0=8,+0, a =0, B = cos0,, Q=4 (A — C)C-lw, cos B, (6)

The parameter in (4) is Q, , and in (5) and (6) it is the angle 4, loca-
ted, by assumption (§ > 0) in the first quarter. The case (4) 1s that of
uniform rotation in the orbit plane. In the case (5% the satellite axisz 2
is perpendicular to the radius vector R , ‘while in (6) it is perpendicular
to the mass center velocity vector, where moreover [ = O in the cases of
(#) ana {(5). Solutions {4} to (6) have been obtained by a different method
in the works of V.T. Kondudar' and Duboshin {See, for example, [2]).

Let us find the sufficlent stability conditions for the motions {4) to (o)
by the method of N.G. Chetaev. The first integral of the equations of uhe
satellite relative motion for a circular orbit [1] and for the case of
dynamic symmetry 1s of the form

A+ ) +Cr 4+ 362 (C— AT+ o (4— 0 B =h

Here pr 1is the projection of the relative angular veloclty w — ws oOfF
the satellite on the Z-axis {(w is the absclute angulay velocity), while P
and ¢ are its pro.ectlons in any two mutually perpendicular directions in
the equatorial plane of the satellite. Also, because of the condition of
dynamic symmetry, we have the first lntegral r + w,® =7, . We will select
the constants ¥, and k, such that the first Integral V == h 4 k7 + kera®
obtain a strict minimum for the values of its arguments corresponding to one
of the motions in (4) to (6). Note ivhat for all these moticns p =¢ =0
and r = Q

Let us first concioer the undisturbed motion (%) and let for the disturbed
motion p=1iy, q= Uy P = Qg+ ug @ == u; and T = U while g 1is elimi-
nated by means of (3). Then, as can be easily seen, the first Integral
Vy = h— 20Qyry considered as a functlon of the varlables wu, , has a strict
minimum at the point wu, = O {1 = 1,2,3,4,5), If simultaneously

CQ 4 we (C—A) >0, CQy 4 4ay (C — A) >0

Hence, on the strength of the known theorem for the stablility of motion,
1t follows that for the stability of motion (%) it is sufficlent that

Q> (A —Cuw,/C for ASC M
Q>4d—CoslC for A >C
Let us consider now the motion {5) as undisturbed and let
p = Uy, g = ug, r= (AC~1 — fJwgcos8y + uy
B =cosBy -+ uy, T = u

while o 1s eliminated by means of (3). In this case, %he function

Vy = h — 240 ¢re €080 + C2A-1r,?
will be, up to the accuracy of the constant term, a positive-definite quad~
ratic form in u, for the condition 4 < ¢ which will be sufficient for the
stabllity of motion (5).

Finally, in order to investigate the stability of motion {(6) we let
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P=1U §=1Uuy r=4(AC"— 1)0ec0s0, -+ u,
a = u,, B £ 00890‘1- us

and eliminate y Dby means of (3). The first integral
Y \ Vo= h— B8(A — Clogrocosh,

positive~definite quadratic form in wu, for 4> (.
This, conditicn is sufficient for the stability

1 \ of motion (6).

\ is, up to the accuracy of the constant term, a

7 h Let us compare the derived sufficient condi-
tions with the necessary conditlons for stability
of the motions (4) to (6). These conditions are

§ obtained if the equations of motion are linearized
§~ near the solutions (4) to (6) and require that

the real parts of all roots ¢f the characteristic

equation for the system of linear approximation
be nonpositive.

The investigation of stability of motion (4)
leads to the necessary conditions

Y
[a\]
B

\ a>2Vh, b>0 ®
where
a={ey+toe—22+(ey+z— 1)+ (zy ¥+ b — &)
-2 3 b=(zy -+ z— 1) (xy + 4o — 4), z=0C/A4,
y= Qo /0n {9
Note that ¥ & 2 for any dynamically symmetrical
| rigid bedy. Conditions (8) and (9) have been
derived in a somewhat different notation by

Tomson [3]. Substituting (9) into (8) these con-
ditions are simplified. For # > 1 it is necessary
for stability that one of the following two in-

Fig. 1

equalities be satisfied

y>ri— 4, y<4d(1— 1) (10)
For {1 1t 1s necessary that either
y>4(@1—1) 11)

or that the following two conditions be fulfilled simultaneously

y <zl —{, Vi—zs—ay+ Véi—bz—ay<2—2a—ay (12)

The sufficient conditions (7) differ only by the strict sign of inequality
from the first condition in (10) and the condition in {11). PFig. 1 shows
the regions defined by the inegualities {10) to {12) on the surface of the
parameters x, ¥ . The region 1 is truly stable (sufficient conditions are
fulfilled), the regions 2 are unstable (necessary conditions are violated),
while in the regilon 3 only the necessary conditions are satisfied. The
boundaries of the regions 1,2 and 2,3 have asymptote x = O , while the
boundary of the remions 2,3 for x < 1 intersects the x-~axls at z = zy=

= (3 ]/5 — 5) / 2 =~ 0.854. Note that in the reglon 3 there exlst points
(y -~ —= , as Wetl as the line x = 1) corresponding to the known stable
regimes of motion.

In [3] the conditions of the type (10) to (12) are missing, and-the pre-

sented dlagram of the stablility regions 1s incorrect, especlally near x =1
{the dashed curve in Fig. 1). It has no region of instability for x> 1 .

The necessary conditions of stability for motions (5) and {6) have been
derived in the work of Duboshin [2]. For the stability of motion (5) it is
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necessary that.d <{C. The above derived sufficient condition A <{C differs
from the necessary one only by the strict inequality sign.

For the stability of motion (6) it is necessary that either A >C (x < 1),
or that following two conditions be simultanecusly fulfilled [ 2]

4 1802 — 272z 4 8 4+ 2 3z — 2 3¢ —1) Bz — 4
x,>z"31"» cos? 6, > T2 (x___“)i)l/( el ) Bz ) (13)

where x 1s defined by Formula (9). The regions of true stability 1 and the
instability 2, and the region 3 where the

18 necessary conditions (13) are fulfilled, are

shown in Fig. 2 for the motion {(6)

We will consider some particular cases.
2 For Q¢==—wy(y = —1) solution (4) de-
scribes the translational motion of the satel-
1 lite, the axlis 2 of dynamic symmetry of
— which 1s perpendicular to the orblt plane
(0, is the relative angular velocityﬁ» It
follows from the above-cbtained codnditions
3 that this motion can be stable only for a

T satellite where { < C /A <4

- For Q= 0 (y = Q) the motion (4) represents
2 the pozition of relative equilibrium of the
satellite 1In a clrcular orbit, for which
Fig. 2 satellite'’'s z-axls 1s perpendicular to the
: orbit plane. Conditions (7) and (12) show
that this posltion of eqguilibrium 1s stable
for A <€ and unstable for € /A < zy = 0.854.

For g8,= n/2 the motions (5) and (6) pass into two different positions
of relative equililbrium of the satellite in a circular orbilt: the z-axis is
directed along the tangent to the orbit or along the radius vector R . The
derived conditions show that the orlentatlon of the satellite axdis g along
the tangent to the orblt 1s stable for 4 < ¢ and unstable for 4 > C ,
while its orilentation along the radilus vector 1s stable for 4 > ¢ and un-
stable for 4 < C .
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