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Considered is the motion of a rigid body (satell.ite) in the field of attrac- 
tion of a fixed center. Sufficient conditions of stability are derived for 
the regular precession of a satellite which are compared with the necessary 
conditions. 

Within the accuracy of terms of order (1/R)2 (1 is the characteristic 
linear dimension of the satellite and R is the radius vector from the 
center of attraction to its center of mass) the motion of the satellite 
center of mass may be considered independent of its relative motion and is 
consequently governed by Kepler's laws. Let the satellite possess dynamic 
symmetry with A and C being its principal central moments of inertia 
(equatorial and axial respectively). The moment of the gravitational forces 
about the satellite center of mass within the accuracy of terms of order l/R 
is equal to [l] 

L = $R+ (C - A) (Rz) (R x z) (1) 

Here u is the gravitational constant and 1; is the unit vector along the 
dynamic symmetry of the satellite. We will find the conditions for which 
the satellite can perform regular precession. The moment of external forces 
must in this case be equal to 

L=(q>:z) [CQ+(C-_4)o,cose] (2) 

where u)~ is the constant angular velocity vector of the precession, R is 
ular velocity of the body and 8 the nutation angle. Comparing (1) 
we note that if L # 0 the vectors R and e are coplanar. 

It follows from the kinematic properties of K$ier motion and regular pre- 
cession that this is possible only in a circular orbit, whereby u)~ = UJ~ 
(4 is the angular velocity vector for orbital motion, UJ,,~= pX3). If, on 
the other hand, L = 0 then the vectors R and e are at all times 
either collinear or orthogonal (the trivial case A = C is not considered). 
In the presence of regular precession, this is also possible only in a circu- 
lar orbit and for u)~ = wg . Therefore, in the following the orbit will be 
considered circular. 

Let a, 8 and be the direction cosines of the unit vector 2 re1a- 
tive to the satelliie mass center velocity vector, the normal to the orbit 
plane (uI~) and the radius vector R , respectively. Obviously, 

.t + 8" -j- 7s = 1 (3) 
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In addition, @ = cos 0 and with no loss of generality it i: a .'un,i'~ Lllii 
fi >,O (in the opposite case the direction of z i: reve~.ceci). Equatill~~, 
(1) and (2) with W, = UJ,, , we find the possible regimes. l.li' rc@ar, p1'~ - 
cession which can be conveniently represented in trllc, firm r~f th 'i-c' ~,ne-pal';~- 
meter families 

e =o, cz=~=O, P = 1, Q = 80 (4) 

8=6,#0, 7 = 0, @ = GOSO*, St = (A -- C)C_"CO, cos 8, (5) 

e=e,+o* a = 0, p = case,, Q=4(A - c) c-Iw, cos e, (6) 

The parameter in (4) is f& , and in (5) and (6) it is the angle &O lopa- 
ted, by assumption (fl >O) in the first quarter. The case (4) is that of 
uniform rotation in the orbit plane. In the case (5 the satellite axis 2 
is perpendicular to the radius vector R ,'while in t 6) It is perpendicula 
to the mass center velocitv vector. where moreover i = 0 in the cases of 
(4) and (5). Solutions (41 to (6)'haiie been obtained by a different method 
in the works of V.T. Kondudar' and Duboshin (See, for example, i‘21). 

Let Us find the sufficient stability conditions for the motions (4) to (r~) 
by the method of N.G. Chetaev. The first integral of the equations of l&t 
satellite relative motion for a circular orbit [l! and fol' the case of 
dynamic symmetry is of the form 

A (p’ + 9.2) $ Cr2 + 3o02 (C - A) ~2 + a$ (A - C) p2 z 1~ 

Here is the pro;ection of the I,f3lative angular velocity 
the satellite on the z-axis (u, 

UJ-@rug of 
is the absolute angular velocity), while F 

and 4 are its pro,ections in any two mutually perpendicular directions in 
the equatorial plane of the satellite. Also, because of the condition of 
dynamic symmetry, we have the first integral r+iv,i? =rO . We will select 
the constants iri and ka such that the f.'ii,st integral v = h-j- klro f kgrna 
obtain a strict minimum for the values of its arguments corresponding to one 
of the motions in (4) to (6). Note ~11at foil all these motions p=4=0 
and r=n. 

Let us first consider theundisturbed motion (4) and let for the disturbed 
motion p = ic,, q = us, r = ii?, + us, a =: u, and r = I+,, while F is elimi- 
n+tz"by means of (3). Then, as Cdn be easily seen, the first integral 

1 - 2c&,r,, considered as a function of the variables u! , 
minimum at tI,e point ui = 0 (5 = 1,2,3,&,5), if simultaneously 

has a strict 

C62,440,(C--A)>0 

Hence, on the strength of the known theorem for the stability 
It follows that for the stability of motion (4) it is SUffiCient 

&>(A-C)o,/C for A <C 

e,>4(A--c)o~/c for. d >C 

Let us consider now the motion (5) as undisturbed and let 

p = Ul, q = 4. r = (AC-* - l)w, case, + u1 

P = c0sfb + ht 7 = UI 

of motion, 
that 

(7) 

while CI is eliminated by means of (3). In this case, the function 

V,=h- Moor, COS@~ + Csd-lr,‘” 

~111 be, Up to the accuracy of the constant term, a positive-definite quad- 
ratic form in ui for the condition A < C which will be SUffiCient for the 
stability of motion (5). 

Finally, in order to investigate the stability of motion (6) we let 



p = ulr !? = u29 r = 4 (AC-X - l)O@ case, Jr U8 
a = u,, p = cosOo -+ u6 

and eliminate y by means of (3). The first integral 

Fig. 1 

equalities be satisfied 

V, = h - 8 (A - C)o,r, cose, 

up to the accuracy of the constant term, a 
iE:itive-definite quadratic form in u for A > c. 
This+condition is sufficient for the siability 
of motion (6). 

Let us compare the derived sufficient condi- 
tions with the necessary conditions for stability 
of the motions (4) to (6). These conditions are 
obtained if the equations of motion are linearized 
near the solutions (4) to (6) and require that 
the real parts of all roots of the characteristic 
equation for the system of linear 
be nonpositive. 

approximation 

of motion (4) The investigation of stability 
leads to the necessary conditions 

a>2db; b&O (8) 

where 

Q=k?f+r - 2)2 + (zy f x - I) _t (zy + 4% - 4) 

6=b?J+r- i) (w -!- 42 - 4)s x = & /A, 

y = QalWn (9) 

Note that X 62 for any dynamically symmetrical 
rigid body. Conditions (8) and (9) have been 
derived in a somewhat different notation by 
Tomson [ 31, Substituting (9) into (8) these con- 
ditions are simplified. For X&l it is necessary 
for stability that one of the following two in- 

y>x-‘- 1, y g 4 (x-1 - If 

For x<(l it is necessary that either 

y > 4 (z-1 - 1) 

OF that the following two conditions be fulfilled simultaneously 

?4 <x-'- 1, ~1-x-xy+-1/4-4x-zyZy2-x--_ (12) 

The sufficient conditions (7)differ only bythe strict sign of inequality 
from the first condition in (10) and the condition in (11). Fig. 1 shows 
the regions defined by the inequalities (10) to (12) on the surface of the 
parameters X, M . The region 1 is truly stable (sufficient conditions are 
fulfilled), the regions 2 are unstable (necessary conditions are violated), 
while in the region 3 only the necessary conditions are satisfied. The 
boundaries of the regions 1,2 and 2,3 have asymptote r = 0 , while the 
boundarv_of the regions 2,3 for JC < 1 

($3_v5 - 5) I2 
intersects the x-axis at x = x0= 

=: &g5/1.'Note that In the region 3 there exist points . 
m , as Mel1 as the line x = 1) corresponding to the known stable 

regimes of motion. 

In 131 the conditions of the type (10) to (12) are missing, and-the pre- 
sented d?agram of the stability regions is incorrect, especially near x = 1 
(the dashed curve in Fig. 1). It has no region of instability for x > 1 . 

The necessary conditions of stability for motions (5) and (6) have been 
derived in the work of Duboshin [2]. For the stability of motion (5) it is 
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necessary that.;1 <c. The above derived sufficient condition A <C differs 
from the necessary one only by the strict inequality sign. 

For the stability of motion (6) it is necessary that either A >,c (z <I), 
or that following two conditions be simultaneously fulfilled [2] 

r, 
X>,* ~09 e. > 

18~z - 27x + 8 + 2 (31: - 2) y’(32 - 1) (3x - 4) 
27r2 (z - 1) (13) 

where x is defined by Formr 

A0 

.I1 

Fig. 2 

for A <C and unstable. for C 

:a (9). The regions of true stability l andthe 
instability 2, and the region 3 where the 
necessary conditions (13) are fulfilled, are 
shown in Fig. 2 for the motion (6). 

We will consider some particular cases. 
For &= --o~(Y = -1) solution (4) de- 
scribes the translational motion of the satel- 
lite, the axis 2 of dynamic symmetry of 
which is perpendicular to the orbit 
(!& P 

lane 
is the relative angular velocity ti It 

follows from the above;obtained conditions 
that this motion can be stable only for a 
satellite where 1 <C/A <d/a_ 

For 9, = O(y z 0)thc motion (4) represents 
the position of relstive equilibrium of the 
satellite in a circular orbit, for which 
satellite‘s z-axis is perpendicular to the 
orbit plane. Conditions (7) and (12) show 
that this position of equilibrium is stable 
I A < x,, zs 0.854. 

For BO= n/2 the motions (5) and (6) pass into two different positions 
of relative equilibrium of the satellite in a circular orbit: the z-axis is 
directed along the tangent to the orbit or along the radius vector R . The 
derived conditions show that the orientation of the satellite axis e along 
the tangent to the orbit is stable for .4 < C and unstable for A > C , 
while its orientation along the radius vector is stable for A > C and un- 
stable for A < C . 
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